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A modified version of the dynamical droplet model, originally derived by Sorensen et al. [Phys. Rev.
A 13, 1593 (1976)], is used to explain experimental results on alkyl-oxyethylene-glycol monoether
(C;E;)-water critical micellar solutions. The model assumes that the physical clusters formed close to
the critical point can be treated much like percolating clusters with a fractal dimension d,=2.49 and a
polydispersity exponent 7=2.21. For C¢E;-H,0 and C,oE-H,0 critical mixtures, the modified version
of the dynamical droplet model provides results in very good agreement with the experimental deter-
minations of the scattered intensity, the turbidity, and the order parameter relaxation rate, when using as
input parameters the three-dimensionsal universal Ising values of the critical exponents and the proper
sizes of the individual scattering micelles. Static and dynamical background effects can be explained by
the finite size of the monomers, which is explicitly taken into account by the model.

PACS number(s): 82.70.—y, 64.70.—p, 78.20.—e

I. INTRODUCTION

Critical phenomena have been the subject, for several
years now, of various extensive studies, both theoretical
[1,2] and experimental [3], spanning a wide range of sys-
tems, including single fluids as well as binary solutions,
which are the topic of the present work. Those studies
have brought to light one of the manifold features of the
critical phenomena, namely, universality in the diver-
gence of some quantities. Among the physical parame-
ters behaving in that way, one finds the correlation length
[2] &, which measures the mean extent over which fluc-
tuations of the order parameter are correlated. The static
phenomena’s scaling hypothesis states that £ is the only
relevant length close to the critical point. Its divergence
at that point implies the lack of a length for the charac-
terization of what happens. Such an absence is to be
likened to the same one that occurs in fractal objects [4].
On observing a phase separation in binary fluid mixtures
at some temperatures and concentrations, the analogy
was made between critical phenomena in simple fluids
and that separation. At first, the same model could apply
in both cases, with the same universal exponents, since
binary and single fluids belong to the same universality
class [three-dimensional (3D) Ising].

The study of nonionic amphiphile alkyl-oxyethylene-
glycol monoether (C;E;)-water critical micellar solu-
tions is of the greatest interest in the scope of critical phe-
nomena since some of these systems seem to break the
law of universality. Indeed, recently, extensive experi-
ments [5] have revealed large discrepancies between the
universal values of the critical exponents and the mea-
sured ones. For instance in C,,Es-water micellar solu-
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tions, the measured value of the exponent v characteriz-
ing the divergence of the long-range correlation length
v=0.51410.012 is found to be much smaller than the
theoretical one, v=0.63 for a 3D Ising system, and close
to its mean field value v=0.50. To explain those dispari-
ties, it has been argued that for supramolecular systems,
growth of the scattering particles should be taken into ac-
count as the temperature and the concentration are
modified [6]. Another approach [7] was to consider the
effect on the critical dynamics of the background terms of
the transport coefficients, in this case the shear viscosity,
and to account for possible deviations from the ideal crit-
ical state. Indeed due to polydispersity effects, the coex-
istence curve of nonionic amphiphile-water micellar sys-
tems is extremely flat and thus the critical point is practi-
cally difficult to locate very precisely. This way of
analyzing the experimental data produces results in favor
of universality for nonionic amphiphile-water micellar
solutions, in agreement with the experimental findings of
Strey and Pakusch [8] and of Dietler and Cannell [9]
whose data are in fact very close to those published in
Ref. [5].

Some very important points, however, remain unclear
as far as the dynamical critical phenomena are concerned
and we would like to address these questions in the
present paper. Indeed, the analyses of experimental re-
sults performed using mode coupling theory involve a
large dynamical background contribution 'y to the
linewidth. In binary mixtures, this background is con-
nected to the background term of the shear viscosity.
When the dynamical background is small, as is the case
for simple fluids or molecular binary critical mixtures, it
can be calculated by using the Oxtoby and Gelbart pro-
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cedure [10]. When it is not very small, 'y can be evalu-
ated by using the procedure proposed by Burstyn et al.
[11] or by the model given in Ref. [7]. Up to now, how-
ever, no completely satisfactory theory has been given to
treat the case of supramolecular critical systems where
'y can account for more than 30% of the total
linewidth.

It is noteworthy that in percolation as well as in criti-
cal phenomena, a characteristic length diverges on ap-
proaching a threshold. From a very extensive set of low
frequency electrical conductivity measurements per-
formed in an AOT ([sodium bis(2-ethylhexyl)
sulfosuccinate]-water-decane microemulsion system, it
has already been shown [12] that the well-defined per-
colation locus corresponding to a very steep increase of
the conductivity starts very close from the critical point.
Thus if we consider solutions where the solute forms per-
colating droplets, there will be, at the same time, diver-
gence of the correlation length and divergence of the
clusters’ size, so one can apply the percolation model at
the critical point. By using an extended version of the
so-called dynamical droplet model originally proposed by
Sorensen et al. [13] and Martin et al. [14], Tartaglia,
Rouch, and Chen [15] and Rouch, Tartaglia, and Chen
[16] have been able to account for both the percolation
phenomenon and the critical behavior of water-in-oil crit-
ical microemulsion systems, including the scattered in-
tensity I (q), the decay rate I of the order parameter, and
also the shape of the order parameter time correlation
function S(g,t) which slightly departs from a single ex-
ponential decay. In the droplet model, the microemul-
sion system is considered to be made of polydispersed
fractal clusters having a fractal dimension d, of 2.5 and a
polydispersity index 7 of 2.2 as given by percolation
theory [17]. The main advantage of the approach of criti-
cal phenomena in supramolecular fluid systems in terms
of the extended version of the dynamical droplet model is
that static and dynamical background which are physi-
cally connected to the quasimacroscopic size of a single
microemulsion droplet are treated in a very natural way.
Therefore, experimental data can be analyzed without
subtracting any background.

The remaining problem is whether the analogy be-
tween percolation and critical phenomena, at the critical
point, is also valid for solutions in which a percolation
line has not been observed experimentally. This analogy
has indeed been proved to be valid theoretically by Coni-
glio and Klein [18], who showed that, when properly
defined, the physical clusters at the critical point are
identical with the percolating clusters, having the same
fractal dimension and the same polydispersity index.
Moreover, the fractal nature of the correlated regions
close to the critical point has been experimentally verified
by Guenoun, Perrot, and Beysens [19] and Beysens,
Guenoun, and Perrot [20] by performing direct observa-
tions of the clusters using a video camera. They arrive at
the conclusion that these domains are self-similar in
shape (fractal), with a fractal dimension d ¢ close t0 2.8, a
value slightly higher than the theoretical estimate, but
reasonable when accounting for experimental errors.

Therefore, we will use in what follows the extended
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version of the dynamical droplet model [15,16] to analyze
a new extensive set of experimental data on water-alkyl-
oxyethylene-glycol monoether (C,E;) critical micellar
solutions, including the scattered intensity, the turbidity,
the order parameter relaxation rate, and the shear viscos-
ity. We shall also reanalyze experimental results ob-
tained by some of us and previously published [21-23].
We shall focus in this paper on the case of nonionic am-
phiphiles C(E; and C,yE,-water solutions which have
been previously analyzed in terms of mode coupling
theory including backgrounds, by using the 3D Ising
values of the critical indices. We shall show in particular
that when the finite size of the critical micelles is properly
taken into account via the use of the modified dynamical
droplet model, it is not necessary to introduce static or
dynamical backgrounds to fit the experimental data,
much as in the case of microemulsion systems [16].

II. THEORETICAL BACKGROUND

When the experimental conditions of the system are al-
tered, the interparticular interactions change according-
ly. Indeed, one can go from regions where the interac-
tions are predominantly attractive to regions where
repulsive ones dominate. For mixtures, not only are the
interactions among the solute’s molecules of importance
but so are the interactions between the solute’s and the
solvent’s molecules. Those interactions are notably re-
sponsible for the shape, concave or convex, of the coex-
istence curve. They are obviously at the heart of the ag-
gregation process widely observed in supramolecular
multicomponent systems such as micelles, microemul-
sions, and gels. To characterize the aggregation process,
numerous models have appeared, all of which acknowl-
edge the fractal character and the polydispersity of the
aggregates formed.

As far as percolation is concerned, numerical simula-
tions [17] led to the following universal values of the frac-
tal dimension d and of the polydispersity index 7:

d;=2.5, 1=2.2.

These indices are connected through a hyperscaling rela-
tion [17] involving the dimension d of the space:

d=dy(r—1) . (1

By defining new clusters (called physical clusters)
which obey new percolation rules, Coniglio and Klein
[18] were able to reproduce the usual Ising behavior at
the critical point. Thus concentration fluctuations can be
considered as clusters having a fractal dimension dj
given by

—4_B

d;=d S ()
where $=0.33 and v=0.63 are, respectively, the univer-
sal exponents of the coexistence curve and of the long-
range correlation length, and d =3 is the dimensionality
of space. From formula (2) we infer d;=2.5, which,
when introduced in the hyperscaling relation (1), leads to
7=2.2. These two values are, respectively, equal to the
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fractal dimension and the polydispersity index of per-
colating clusters.

In fact, when accounting for corrections to the static
pair correlation function by introducing the Fisher’s ex-
ponent 7, the fractal dimension d; is

S
d,——T’l, 3)
and the polydispersity index 7 deduced from the hyper-
scaling relation is

p=11-n @
5—n

With 7 close to 0.03, we infer df=2.49 and 7=2.21,
values which are extremely close to those relevant for
percolation. When comparing the experimental results to
the modified version of the Martin and Ackerson [13,14]
dynamical droplet model, which we shall develop briefly
in what follows, we will use those values of the indices d ¢
and 7 as input parameters.

For fractal objects, the density’s correlation function
has the interesting characteristic of being homogeneous
[17]. From that, Chen and Teixeira [24] were able to
deduce the structure factor of a fractal aggregate. Their
result, valid in the limit of small scattering wave vector ¢
relevant for quasielastic light scattering, can be written as

sin[(d;—1)arctan(g& )]
(d;— g€, (1+q2%2) Y "

In the above formula, the wave vector g is given in a
quasielastic light scattering experiment by
q =(41/A)sin(6/2) where A is the wavelength in the
medium of the incoming laser radiation and 6 is the
scattering angle. As was shown by Sorensen, Cai, and Lu
[25], the radius of gyration R; of the k cluster containing
k droplets is connected to £, by

172
dyd,+1)
2

Sk(Q)=k

(5)

Ri=&

A direct relation links k, R;, and R, the radius of a sin-
gle droplet:

R,=Rk'*. (©6)

We shall use the following approximate Gaussian ex-
pression for the g-dependent static structure factor of a k
cluster, shown to be valid for critical phenomena [16]:

Si(g)=k exp[ —1q’R}] . )

When performing experiments.on a polydispersed sam-
ple, the measured quantities are averaged over a size dis-
tribution. So we need to postulate a cluster size distribu-
tion. In his extensive study on percolation, Stauffer [17]
introduced the following distribution N (k), which is a
scaling function of the variable k:

k 4
S

In Eq. (8), s is the average cluster size, f[y] is a smooth

Nk)=k™7f (8)

cutoff function of k/s decaying more rapidly that any
power, 7 is the polydispersity index, and o is a universal
exponent equal to about 0.5. The value of o entices us to
take the cutoff function as a Gaussian. Assuming that
the total mass of the system is unity, the normalized clus-
ter size distribution for percolating clusters reads

2

KN (k)= ——

r

k! "exp

—EJ, ©)
S

2—1',~1—
s

where I'(x,y) is the incomplete Euler’s I function. In
what follows we shall assume that the size distribution of
the critical clusters is identical to that given by Eq. (9)
and pertinent for percolation.

A. Scattered intensity

As we shall see below, the critical composition of the
sample in an amphiphilic molecule is very small (in any
case, less than 15%). Furthermore, close to the critical
point, the density of clusters goes to zero. Thus we can
assume, at least as a first approximation, that the fractal
clusters are dilute and not interacting. With these hy-
potheses, the scattered intensity I (q) is given by the sum
of the intensities scattered by each aggregate weighted by
the normalized size distribution kN (k). Hence,

I(q)flmdk KN (K)Si(q) . (10)
To calculate this integral, we define the correlation
length & by
R,
§=55
With those definitions, by combining Egs. (9), (10), and

(11), one can show [16] that the scattered intensity I (x) is
given by

vy an

d
I(g)=1I, —’f—] T(1xtyyI2
X1
r
r|3-n [%‘— (l+x2)df/2]
x —! 7 L, (12)

el

ri2—m,

where I is a term depending upon the geometry of the
experiment and almost independent of temperature,
x =qE& is the scaling variable, and x,=(1/V3)gR, can
be considered as the effective reduced size of the mono-
mer and enters explicitly into play in Eq. (12).

When plotted as a function of x, and for realistic values
of the paraemeters, the scattered intensity given by Eq.
(12) reduces to the usual form

where Y;=Xxo€~ ¥ is the osmotic compressibility,
e=(T,—T)/T,, v is a universal exponent equal to 1.23,
I is a constant, and @ (x) is the Ornstein-Zernike stat-
ic correlation function. The correlation length £ diverges
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when the temperature nears its critical value T, accord-
ing to §=§” ", with &, the short-range correlation
length and v=0.63.

The situation is different when the intensity is plotted
as a function of the reduced temperature. In the so-
called hydrodynamic regime, x <<1, the radius R, of the
monomer plays a very important part. When R, is very
small, as is typically the case for simple fluids or molecu-
lar binary mixtures, the plot of the intensity versus €
shows the usual €7 behavior. However, when the size
R, of the monomer is not very small compared to &,
which is typically the case for solutions made of
supramolecular aggregates, significant departures from
the €77 law are observed. In particular, in this regime, it
is no longer possible to fit the scattered intensity to a
power law in a large temperature range since an upward
curvature of the plot is observed. Moreover, fitting inten-
sity data to a power law in a restricted temperature
domain would give an apparent value of the critical ex-
ponent y smaller than the Ising’s value used as input pa-
rameter. Besides, this value would depend upon the tem-
perature domain in which the data have been fitted.

B. Turbidity

The turbidity ® is the whole intensity scattered. Its
computation entails not only a summation over the clus-
ter size distribution but also a summation over the solid
angle [26]:

0(6)=0, [ "d¢ [ "d6sing [ “ak kN (k)
X (1—cos?¢ sin’6)
XSi(q) , (14)

where @, is a constant.
The integration over the solid angle can be easily per-
formed and gives

@(g)zeofl‘”dk k2N (k)H(g2R}), (15)

where g,, is the wave vector corresponding to back-
scattering and the function H (y) is given by

H(y)=y 3[y2—2y +4—(p*+2y +4)exp(—y)] .  (16)

As for the remaining integration, the analytical compu-
tation is not possible so the turbidity will be obtained nu-
merically for each value of the reduced temperature or of
the correlation length. When the size of the monomer is
not negligible compared to £, the expression of the turbi-
dity @ as given by Eqgs. (15) differs from the Puglielli and
Ford result [26] calculated from Ornstein-Zernike formu-
la. Indeed, in this case the turbidity ® calculated from
Eqgs. (15) shows an upward curvature when plotted as a
function of the reduced temperature, much like the scat-
tered intensity. However, the Puglielli and Ford result
[26] and the present calculation are very close numerical-
ly when R, is much smaller than &.
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C. Dynamical critical phenomena

The order parameter relaxation rate I'(x) corresponds
to the initial decay rate (first cumulant) of the cluster
density-density time-dependent correlation function
S(g,t). Itis given by
. (17

_ | d
L(x,x, )—th_rf(x) & In[S(g,¢)]

We shall assume that the physical clusters are rigid,
spherical, and noninteracting. Thus the only diffusive
process that has to be accounted for is the translational
diffusion. The expression for I is then given by

2
I(x, -9 (- ,
(x5x1)=755 fl dk kN (k)S; (q)Dy (18)
where D;, the diffusion coefficient of the k cluster, is
given by

kgT —-1/d
D,=R 4
k 6muR,

=Dk (19)

In formula (19), u is the shear viscosity of the solution,
and D, the renormalized diffusion coefficient of a single
droplet, reads

_ ksT
~ T 6muR, ’

D, (20)
R being a fitting parameter.
From the above equations, it is easy to calculate the re-
duced first cumulant I'*(x,x, ), which reads
F(x ' X1 )

*(x,x)=——— . 1)
D\R,q

Integrating Eq. (18), we obtain

1
T {3—r———,u
3r TB—1x}] dq
*(x,x,)=— .
8 1 df F[3_T’u]
r 3“‘T"’T,x,
: 172
X [1+— , (22)

x2

where u =(x, /x r(14+x2)% "

Much like intensity and turbidity calculated from the
droplet model, the reduced first cumulant T'* explicitly
depends on the reduced size x,; of the monomer. It is then
impossible to cast the relaxation rate of the order param-
eter into the product of a universal function of x =g§& by
a system-dependent function as is the case for mode cou-
pling or model decoupling original theories. However,
very close to the critical point where the long-range
correlation length £ is much larger than R, or when R
is of microscopic size as is the case, for instance, for
molecular binary mixtures, the reduced first cumulant be-
comes a quasiuniversal function of x =¢£. It reduces ex-
actly to the Perl and Ferrel [27] mode decoupling result
when R —0 and in this case, it is numerically very close
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FIG. 1. Plot of the reduced linewidth calculated from formula
(22) as a function of the reduced temperature for various values
of the parameter x,. The dotted curve corresponding to x; =0
reduces to Perl and Ferrel’s expression [27] and is nearly identi-
cal with Kawasaki’s universal function [1].

to the Kawasaki formula [1]. This is shown in Fig. 1
where we have plotted the reduced linewidth I'* as a
function of the reduced temperature € at a wave vector
1.025X 107 m~! (scattering angle 6=45°) for different
values of x;. The numbers used to draw the different
curves are those relevant for the mixture C4E;-H,0 and
will be given below. It can be seen in Fig. 1 that the
curves drawn for nonzero values of x, significantly devi-
ate in the hydrodynamic regime from Kawasaki’s univer-
sal plot corresponding to x, =0.

At that point it has to be stressed that the modified
dynamical version of the droplet model given above can
be applied only if the monomer units are quasispherical,
and have a size nearly independent of temperature at
least near the critical point. In what follows we shall as-
sume that the micellar systems that have been experimen-
tally studied obey the above requirements. However,
these points are debated experimentally as well as
theoretically and will be discussed in the Conclusion.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

For some of the surfactant-water binary mixtures
forming micelles, as for simple fluids, one can observe a
phase separation leading to two homogeneous domains,
of different concentrations, and only kept apart by a men-
iscus. In the temperature-vs-concentration plane, one
plots all the points for which such a transition occurs and
thus determines the mixture’s coexistence curve which
divides the phase diagram in monophasic and diphasic
regions. It can have a concave or convex curvature. The
mixtures considered here are aqueous solutions of
nonionic amphiphile alkyl-oxyethylene-glycol monoether

CH;-(CH,); _;-(OCH,-CH,),-OH ,

also called C,E;. The two nonionic amphiphiles we stud-
ied are C¢E; and C,oE,. For these systems one observes
a lower critical point. So we will define the critical tem-
perature T, as the nethermost point of the coexistence
curve. To that temperature corresponds a critical concen-
tration C.. The monophasic region being beneath the di-

1295

phasic one, we shall increase the temperature in order to
reach T,, keeping constant the concentration in ampbhi-
phile. In the case of C,E;-water critical micellar solu-
tions, the coexistence curve is extremely flat, which may
lead to some uncertainties in the critical composition.
The flatness as well as the skewness of the coexistence
curve toward the higher concentrations have been ex-
plained by Blankstein, Thurston, and Benedeck [28] by
introducing polydispersity effects. However, at least for
the two mixtures studied in this paper, when reduced to a
small concentration range close to the critical composi-
tion, the coexistence curve can be fitted to a power law
with an exponent B very close to its Ising value which is
equal to 0.33.

A. C4E;-H,0 solution

A complete presentation of the properties of this solu-
tion can be found in Ref. [21]. We give here only the
main results of importance for the actual study. The
determination of the coexistence curve gives a critical
temperature T, =317.4 K and a critical mass fraction of
amphiphilic molecule C,.=0.146. Intensive measure-
ments of the scattered intensity, of the turbidity, of the
shear viscosity, and of the order parameter relaxation
rate have been performed. So we can consider this solu-
tion to be an excellent case to test the model.

The scattered intensity’s measurements were per-
formed at 6=90°, corresponding to a wave vector g equal
to 1.894X 10"’ m~!. The order parameter relaxation rate
has been measured at four different scattering angles:
6=45°, 60°, 90°, and 120°. The shear viscosity u(T) of the
micellar solution at the critical composition was also
measured in a large temperature range corresponding to

3.15X107°<e<1.88X1072%.

The experimental data fit very well a law of the type
w(T)=pBuC. The multiplicative background viscosity u®
is given by an Arrhenius law: p®=pexp(—U/T), with
Uo=2.6 Pas and U =2.27X10* K, whereas the critical
viscosity uC is given by u¢=0.795¢ "%, with an exponent
¢=0.04, in very good agreement with the renormaliza-
tion group theoretical estimate [29].

In Figs. 2, 3, and 4 are plotted the scattered intensity,

10° {

10° +

Scattered Intensity (arb. units)

107 10°¢ 10°8 10 103 10?
Reduced Temperature
FIG. 2. C¢E;-H,0 critical micellar solution. The scattered
intensity is plotted as a function of the reduced temperature.
The symbols refer to experiment, whereas the solid line is the
theoretical estimate deduced from formula (12).
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10! f t ;

10°+ T

10"+ 1

Turbidity (cm™)

102+ } } r
10 107 10 107 10?2
Reduced Temperature
pe

FIG. 3. C¢E;-H,O0 critical micellar solution. The turbidity is
plotted as a function of the reduced temperature. The symbols
refer to experiment, whereas the solid line is the theoretical esti-
mate deduced from formula (15).

the turbidity, and the linewidth, respectively, as a func-
tion of the reduced temperature. The solid lines are the
theoretical results we obtained by using the modified ver-
sion of the dynamical droplet model, whereas the symbols
are the experimental determinations. As indicated in Sec.
11, the correlation length’s exponent v was kept constant
throughout this work and taken equal to its theoretical
value 0.63 or, if one prefers, the fractal dimension and the
polydispersity index are fixed, respectively, to 2.49 and
2.21. We can see on the graphs that a very good agree-
ment is achieved between the experimental determination
of the parameters and the theoretical estimates, always
within the limit of the experimental errors.

The three adjustable parameters used to fit the data to
the modified version of the dynamical droplet model are
the short-range correlation length &, the radius of the
monomer R, and the amplitude R. The values we get for
these parameters are

£=(3.910.3) A,
R,=(22.0+£1.0) A ,

and

10° + 1

First Cumulant (s™)
2
O
.'.I:
)

102 + ; } - -
10 10° 10 10 102
Reduced Temperature

FIG. 4. C4E;-H,0 critical micellar solution. The relaxation
rate of the order parameter is plotted as a function of the re-
duced temperature for different values of the scattering angle.
The symbols refer to experiments: circles, 8=45°; squares,
6=60°; diamonds, 8=90°; triangles, 6=120". The solid lines are
the theoretical estimates deduced from formula (22).
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R =1.151+0.05 .

We can compare these values to those previously pub-
lished for this mixture. The analysis of the experimental
data by means of the mode coupling theory of critical
phenomena, including background effects implying fitting
of £, and v, leads to the following results:

£,=(3.560+0.012) A , v=0.627%0.006 .

Within the experimental errors, the exponent v is
found equal to its theoretical value 0.63. As for &, its
value is confirmed by Corti et al. [5] whose measure-
ments yield £,=(3.40%0.03) A. So the value we ob-
tained for &, using the droplet model is in good agree-
ment with the previous determinations. As far as the am-
plitude R is concerned, the value we get is 1.15. In classi-
cal mode coupling theory, this amplitude should be equal
to 1.027 [1]. On the other hand, the theoretical values in-
ferred from the renormalization group range from 0.9 to

1 [29]. So the numerical result we obtain is slightly
greater than the mode coupling theoretical estimate but it
is close to the renormalization group predictions. It is,
however, difficult to draw some conclusion from this last
result since in the frame of the dynamical droplet model,
it seems not to be possible presently to calculate this am-
plitude and even to show if the amplitude is universal or
not.

The radius of C¢E;-water micelles has been estimated
from a static light scattering experiment performed by
Corti et al. [25] to be 12 A. The value we infer for the
parameter R, from fitting our expenmental data to the
droplet model namely, (22+1) A, is nearly equal to the
diameter of the micelles which represents the closest ap-
proach of the center of mass of the two monomers.

B. C,oE 4-H,0 solution

For C,,E,;-H,0 solution, linewidth and turbidity have
been very carefully measured [22]. As in the former case,
we only state here the indispensable quantities.

The critical point was estimated to be located at
T.,=292.4 K and C,=22 mg/g. The linewidth was
determined at the following angles: 6=30°, 60°, 90°, and
120°. In the case of this mixture, the shear viscosity can
be represented by the law

w(T)=pB(QoE) e .

The values of the critical exponents are x,=0.065 and
¢=0.041, in perfect agreement with the predictions of
the renormalization group theory. The system-depcndent
wave vector cutoff is equal to @, =9.1X10°m™". As for
the background term y”, it was fitted accurately to an
Arrhenius law, u®=pgexp(— U /T), with

Ho=(85.6%2.1) mPas
and
U =(1.01£0.02)X10* K .

Figures 5 and 6 represent the data points obtained ex-
perimentally (symbols) together with the best fits (solid
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FIG. 5. CoE4-H,0 critical micellar solution. The turbidity
is plotted as a function of the reduced temperature. The sym-
bols refer to experiment, whereas the solid line is the theoretical
estimate deduced from formula (15).

line) to the dynamical droplet model. The parameters
used for the fits are §,=(12.2+0.5) ;\, R, =(30x1) A,
and R =1.0510.03. We can compare our findings to
those deduced from fitting the experimental data to
Kawasaki’s theory, ie., £,=(10.710.5) A,
v=0.6310.01.

The values inferred for &, by the two theoretical mod-
els are very similar. As to R;, no experimental value
could be obtained, so we cannot judge of its accuracy.
However, the C,, chain is longer than the Cq one and so
getting a micellar radius slightly larger than in the case of
C4E;-H,0 solutions seems to be very reasonable. More-
over, the value we infer for the amplitude R is about 1.05,
and is in good agreement with the mode coupling
theoretical estimates, 1.03.

IV. CONCLUSION

The analogies between critical fluctuations and per-
colation clusters established theoretically by Coniglio and
Klein [18] and experimentally by Guenoun, Perrot, and
Beysens [19] and Beysens, Guenoun, and Perrot [20] have
allowed us to apply a modified version of the dynamical
droplet model proposed by Tartaglia, Rouch, and Chen
[15] to explain our experimental data on nonionic

10 £ J
~ C10E4-H20
l{”z o___oﬁ_ﬂ,mf—fr/‘r(ﬁ
‘é 103 L a 4
=
€
o}
o 107 | 1
£
[
10! e el -
10° 10 103 10 10!
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FIG. 6. C\4E,;-H,0 critical micellar solution. The relaxation
rate of the order parameter is plotted as a function of the re-
duced temperature for different values of the scattering angle.
The symbols refer to experiments: dots, 6= 30" squares, 6=060°;
diamonds, 8=90° triangles, 6=120°. The solid lines are the
theoretical estimates deduced from formula (22).

amphiphile-water micellar solutions near their critical
point. These results have been obtained making the as-
sumption of spherical micelles of constant size, the phase
transition occurring by cluster growth. Thus they seem
an indication against micellar growth with temperature
and concentration. In this regard, Kato and Seimiya [30]
and Corti [5] have performed extensive researches based
on measurements of micelles’ hydrodynamic radius by
means of quasielastic light scattering, and on measure-
ments of the mutual diffusion and the self-diffusion
coefficients using NMR. Kato and Seimiya [30] draw the
conclusion that micelles’ growth combined with the
structural transition from sphere to rod is rather likely.
On the other hand, the conclusions of Corti et al. [5]
weaken Kato’s. Furthermore, small-angle neutron
scattering (SANS) experiment performed by Hayter [31]
shows that CgEs-D,0 micelles remain constant in size,
the diameter being equal to 47 A, and develop a short-
ranged attractive potential with increasing temperature
towards the critical point. A similar conclusion was
drawn by Di Meglio et al. [32] for C,,Es-H,0 micelles.
So, close to the critical point, it seems that the model of
spherical micelles of approximately constant radius is
sensible in the case of not-too-long molecular chains (Cg,
for example), whereas the longer chains’ behavior may
not agree with that representation. Therefore, at least for
the case of nonionic surfactant molecules studied in the
present paper, we can then conclude that our hypothesis
of spherical micelles of constant size is not unrealistic.
The results obtained in this analysis, while different
from those yielded by the theory of classical critical phe-
nomena including backgrounds [21-23], are confirmed
by other studies either performed directly on the same
solutions as those used here [21-23] or indirectly on solu-
tions similar to them [S]. The important conclusion is
that to fit the experimental results to the modified version
of the dynamical droplet model, the exponent v always
keeps its universal value 0.63. This was also the case
when data obtained on the mixtures studied in the
present paper are fitted to conventional theories of criti-
cal phenomena. However, to get this result, static as well
as dynamical background effects have to be accounted
for. On the other hand, when using the modified version
of the dynamical droplet model of Tartaglia et al.
[15,16], no background effects either on the static (inten-
sity and turbidity) or on the dynamical critical
phenomenon (order parameter relaxation rate) have to be
introduced. The size of monomer R, which is a parame-
ter of the theory, comes into play in a natural way and
accounts for the observed deviations of the relaxation
rate of the order parameter when compared to mode cou-
pling or mode decoupling theories. The finite size effect
of the monomer introduces what could be called
nonuniversality. This sort of nonuniversality is only siz-
able rather far away from the critical point, in the cross-
over regime. However, close to the critical point, the
normalized scattered intensity and the reduced relaxation
rate of the order parameter are scaling functions of the
scaling variable x. Furthermore, the critical indices are
always set to their universal values. So in the frame of
the modified version of the dynamical droplet model, the
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critical phenomena are universal.

As a final comment, we do not observe deviations from
exponentiality of the scattered intensity correlation func-
tion, as was very recently reported for an AOT-water-
decane critical microemulsion system [16]. In this latter
case the measurements of the intensity correlation func-
tion have been performed using a log correlator, and
small deviations from exponentiality have been observed
at long delay time, i.e, for large values of the production
I't. We believe that these deviations from exponentiality,
which are also connected to finite size effects, cannot be
observed for the nonionic amphiphile-water micellar
solutions discussed in this paper for two main reasons.
First, the intensity correlator used in the actual experi-

ments is a linear one. With this type of correlator it is ex-
tremely difficult to achieve a great accuracy for values of
the reduced decay time I't greater than 2, which is the
lower bound for detectability of nonexponential effects.
Second, the radius of the nonionic micelles studied in the
present paper, being roughly five times smaller than those
of the microemulsion droplets, are not large enough to
lead to sizable effects.
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